| COMPONENTS: | ORIGINAL MEASUREMENTS: | | | |--|---|--|--| | 1. Magnesium sulfite; MgSO ₃ ; [7757-88-2] | Marusawa, T. | | | | 2. Water; H ₂ O; [7732-18-5] | Kogyo Kagaku Zasshi <u>1917</u> , 20, 280-7. | | | | | | | | | VARIABLES: | PREPARED BY: | | | | | | | | | Temperature: 291 K | B. Engelen | | | | EXPERIMENTAL VALUES: | | | | | The author reports the solubility of MgSO ₃ .6Hg | 0 [13446-29-2] in water at 18°C to be | | | | $c(MgSO_3) = 0.0501 \text{ mol dm}^{-3} (5.229 \text{ g/dm}^3)$ | compiler). | AUXI LI ARY | INFORMATION | | | | METHOD APPARATUS/PROCEDURF: | SOURCE AND PURITY OF MATERIALS: | | | | Saturation method. Equilibrium was established after several days. SO3 was | MgSO ₃ .6H ₂ O was precipitated from oxygen-
free MgCl ₂ solutions with Na ₂ SO ₃ . The | | | | determined iodometrically. | precipitate was checked for Cl and SO2 content. | | | | | Consons | ESTIMATED ERROR: | | | | | The value given is the mean of 4 experiments which differ by 1.8%. | | | | | | | | | | REFERENCES. | | | | | | | | | | | | | | | | | | ### COMPONENTS: - 1. Magnesium sulfite; MgSO₃; [7757-88-2] - 2. Water; H₂O; [7732-18-5] # ORIGINAL MEASUREMENTS: Hagisawa, H. Sci. Rep. Tohoku Imp. Univ., Ser. 1 1934, 23, 182-92; Bull. Inst. Phys. Chem. Res., Tokyo 1933, 12, 976-83. ### VARIABLES: PREPARED BY: Temperature: 273 - 368 K B. Engelen, H.D. Lutz # EXPERIMENTAL VALUES: The solubilities of $MgSO_3.6H_2O$ [13446-29-2] and $MgSO_3.3H_2O$ [19086-20-5] in water at various temperatures are: | t/°C | MgSO ₃ | | | | | |--|---|--|---|--|--| | | mass %ª | m/mol kg ^{-lb} | 2.0 | | | | | MgSO ₃ .6H ₂ O | 1 | <i>d</i> | | | | 0
15
25
35
45
55
57.5
62.5 | 0.338
0.497
0.646
0.846
1.116
1.465
1.688
1.950 | 0.0324
0.0478
0.0622
0.0817
0.1081
0.1424
0.1645
0.1905 | MgSO ₃ ·6 H ₂ O MgSO ₃ ·6 H ₂ O MgSO ₃ ·3 H ₂ O | | | | | MgSO ₃ .3H ₂ O | | MgSO ₃ ·3 H ₂ O | | | | 38
42
46
50
55
60
62.5
65
75
85
95 | 1.034
0.937
0.897
0.844
0.817
0.758
0.748
0.720
0.664
0.623
0.615 | 0.1001
0.0906
0.0867
0.0815
0.0789
0.0731
0.0722
0.0694
0.0640
0.0600
0.0592 | o 25 50 75 100 Temperature (°C) a g/100 ml soln. author b Calculated by compilers | | | # AUXILIARY INFORMATION ### METHOD APPARATUS/PROCEDURE: Saturation method. Equilibrium was established after several hours. Magnesium was determined as the sulfate, sulfite by iodometric titration. ### SOURCE AND PURITY OF MATERIALS: Magnesium sulfite was precipitated from aqueous ${\rm Mg(HSO_3)_2}$ solutions obtained from ${\rm MgCO_3}$ dissolved in oxygen-free water by passing ${\rm SO_2}$. # ESTIMATED ERROR: Deviation in several experiments (2 - 3) is 0.3%. REFERENCES: ### COMPONENTS: - 1. Magnesium sulfite; MgSO₃; [7757-88-2] - 2. Water; H₂O; [7732-18-5] ### ORIGINAL MEASUREMENTS: Markant, H.P.; Phillips, N.D.; Shah, I.S. Tappi 1965, 48, 648-53. ### VARIABLES: PREPARED BY: Temperature: 318 - 368 K B. Engelen, H.D. Lutz # EXPERIMENTAL VALUES: The authors give a solubility diagram for MgSO $_3$.6H $_2$ O [13446-29-2] and two other magnesium sulfite hydrates (MgSO $_3$.xH $_2$ O and MgSO $_3$.x'H $_2$ O) of unknown composition. One value of MgSO $_3$.3H $_2$ O [19086-20-5] at 60°C is also given. The scale is given in mass % of SO $_2$ as MgSO $_3$ and °F by the authors. A scale in mass % of MgSO $_3$ and °C has been added by the ### AUXILIARY INFORMATION # METHOD APPARATUS/PROCEDURE: Saturation method. Saturated solutions were prepared by adding: $\text{MgSO}_3.6\text{H}_2\text{O}$ to water (Δ) ${ m SO}_2$ gas to a MgO slurry () MgO to a $Mg(HSO_3)_2$ solution (0) The solutions were analysed for sulfite. Method not given. SOURCE AND PURITY OF MATERIALS: ${\rm Mg(HSO_3)_2}$ solutions and ${\rm MgSO_3.6H_2O}$ were prepared by adding ${\rm SO_2}$ gas to a slurry of MgO in distilled water. # ESTIMATED ERROR: Not given. REFERENCES: # COMPONENTS: 1. Magnesium sulfite; MgSO₃; [7757-88-2] 2. Water; H₂O; [7732-18-5] ORIGINAL MEASUREMENTS: Markant, H.P.; Phillips, N.D.; Shah, I.S. Tappi 1965, 48, 648-53. # EXPERIMENTAL VALUES (continued): The following numerical data were estimated from the diagram by the compilers. | | MgSO ₃ .6H ₂ O | | MgSO ₃ .xH ₂ O | | MgSO _{3.x} 'H ₂ O | | |----------------------------------|--------------------------------------|----------------------------------|--|---|--|---| | t/°C | mass % | $m/mol kg^{-1}$ | mass % | $m/mo1~kg^{-1}$ | mass % | $m/mol kg^{-1}$ | | 45
50 | 1.23 | 0.119
0.142 | | | | | | 55
60
65
70 | 1.81
2.21
2.75
3.37 | 0.176
0.216
0.271
0.334 | 2.03
1.85
1.67 | 0.198
0.180
0.163 | 0.75 ^a | 0.072 ^a | | 75
80
83
85
90
95 | 4.21
5.35
7.29 | 0.421
0.541
0.753 | 1.53
1.43
1.38
1.34
1.27
1.26 | 0.149
0.139
0.134
0.130
0.123
0.122
0.120 | 3.41
3.14
3.08
2.97
2.82
2.71
2.63 | 0.338
0.311
0.304
0.293
0.278
0.267
0.259 | $^{^{\}rm a}$ MgSO $_3.3{\rm H}_2{\rm O}$ as solid phase. # COMPONENTS: 1. Magnesium sulfite; MgSO₃; [7757-88-2] Rodin, I.V.; Margulis, E.V. 2. Water; H₂O; [7732-18-5] Zh. Neorg. Khim. 1983, 28, 258-9; Russ. J. Inorg. Chem. (Eng. Transl.) 1983, 28, 144. VARIABLES: Four temperatures: 293 - 363 K B. Engelen ### EXPERIMENTAL VALUES: Solubilities of magnesium sulfite in water at various temperatures are reported. | t/°C | | $MgSO_3$ | | | |------|----------------------|----------|--------------|-------------------| | | 10 ⁴ mass | % | 10^2 m/mol | kg ^{-la} | | 20 | 3140 | | 3.018 | | | 50 | 3520 | | 3.384 | | | 70 | 3870 | | 3.722 | | | 90 | 4100 | | 3,944 | | a Calculated by compiler. ## AUXILIARY INFORMATION ### METHOD APPARATUS/PROCEDURE: Saturation method. Equilibrium was established by stirring the saturated solutions in thermostatically controlled glass tubes. Equilibrium was tested for analytically. 4 hr are reported to be sufficient. Magnesium was determined gravimetrically. SOURCE AND PURITY OF MATERIALS: Magnesium sulfite, claimed to be $\rm MgSO_3.3.5H_2O$ [85017-92-1], was obtained by precipitation from $\rm MgSO_4$ solutions with $\rm Na_2SO_3$ (1). ESTIMATED FRROR: Not given. ### REFERENCES. Margulis, E.V.; Grishankına, N.S. Zh. Neorg. Khim. 1963, 8, 2638.